Numerical solution of Plateau’s problem by a finite element method

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

Solution of Wave Equations Near Seawalls by Finite Element Method

A 2D finite element model for the solution of wave equations is developed. The fluid is considered as incompressible and irrotational. This is a difficult mathematical problem to solve numerically as well as analytically because the condition of the dynamic boundary (Bernoulli’s equation) on the free surface is not fixed and varies with time. The finite element technique is applied to solve non...

متن کامل

The Numerical Solution of Obstacle Problem by Self Adaptive Finite Element Method

In this paper, the bisection of the local mesh refinement in self adaptive finite element is applied to the obstacle problem of elliptic variational inequalities .We try to find the approximated region of the contact in the obstacle problem efficiently .Numerical examples are given for the obstacle problem. Key-Words: obstacle problem, variational inequalities, self adaptive finite element, bis...

متن کامل

Numerical Solution of a Non-local Elliptic Problem Modeling a Thermistor with a Finite Element and a Finite Volume Method

We consider the following non-local elliptic boundary value problem: − w(x) = λ f(w(x)) (∫ 1 −1 f(w(z)) dz )2 ∀x ∈ (−1, 1), w(1) + αw(1) = 0, w(−1)− αw(−1) = 0, where α and λ are positive constants and f is a function satisfying f(s) > 0, f (s) < 0, f (s) > 0 for s > 0, ∫ ∞ 0 f(s)ds < ∞. The solution of the equation represents the steady state of a thermistor device. The problem has a unique so...

متن کامل

Numerical Solution for Boundary Value Problem Using Finite Difference Method

In this paper, Numerical Methods for solving ordinary differential equations, beginning with basic techniques of finite difference methods for linear boundary value problem is investigated. Numerical solution is found for the boundary value problem using finite difference method and the results are compared with analytical solution. MATLAB coding is developed for the finite difference method. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1974

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-1974-0331819-6